N. F. Otani, Termination of reentrant cardiac action potential propagation using far-field electrical pacing, IEEE Transactions on Biomedical Engineering 58, 2013-2022 (2011).


Several different types of rapid cardiac rhythm disorders, including atrial and ventricular fibrillation, are likely caused by multiple, rapidly rotating, action potential (AP) waves. Thus, an electrical pacing therapy, whose effectiveness is based on being delivered with a particular timing relative to one of these waves, is unlikely to be useful in terminating the remaining waves. Here, we develop pacing protocols that are designed to terminate rotating waves independently of when the sequences of stimuli are imposed or where each wave is in its rotation at the time the sequences are initiated. These protocols are delivered as far-field stimuli, and therefore are capable of simultaneously influencing all the waves present. The pacing intervals for these protocols are, in general, of unequal duration and are determined through examination of the dynamics of AP propagation in a 1-D ring model. Series of two or three stimuli with interstimulus intervals chosen in this way are shown to be effective in terminating these waves over a wide range of ring circumferences and AP dynamical parameters. Stimulus sequences of this type may form the basis for developing new de- fibrillation protocols to test in experiments ormore realisticmodels of the electrical heart.