Viral Hemorrhagic Septicemia and Spring Viremia of Carp: Threats to Aquaculture

Geoffrey H. Groocock
Overview

• Introduction
 – Aquaculture in Northeastern US
 – VHSV, SVC and the OIE
• Viral Hemorrhagic Septicemia
 – Etiology and pathogenesis
 – 2006 Great Lakes Outbreak
 – 2006 surveillance efforts
 – Work in progress
• SVC
 – Etiology and pathogenesis
• Summary
Aquaculture

- 1998 National Aquaculture Survey
 - Northeastern Region total sales: $127,393,000
 - Foodfish: $85,558,000
 - Baitfish: information withheld
 - Ornamental fish: $5,130,000
 - Southern region: $637,394,000
 - Western Region: $166,565,000
- Estimated 2003 total US production: $960,973,000
Importance of VHSV and SVC

- Viral Hemorrhagic Septicemia virus (VHSV) and Spring Viremia of Carp (SVC) are reportable diseases to the OIE.
- Northeastern US currently faced with an outbreak of VHSV in wild freshwater fish in the Great Lakes and surrounding waterways.
Viral Hemorrhagic Septicemia Virus (VHSV)

- *Rhabdoviridae*, genus *Novirhabdovirus* (VHSV, IHNV, HIRRV)
- Readily transmissible to fish of all ages.
- Colder water disease, mortalities greater at lower water temperatures.
- Survivors of the virus can be lifelong carriers.

Essbauer and Ahne 2001
VHSV - Genotypes

- **Genotype I**
 - Europe, Japan
- **Genotype II**
 - Europe, Japan
- **Genotype III**
 - Europe, Japan
- **Genotype IV**
 - North America, Japan, Korea

0.01 substitutions/site

Elsayed et al. 2006
History of VHSV

- Probably in Europe for many years as a non-problematic pathogen
- 1879 Rainbow trout introduced to France
- 1882 Rainbow trout introduced to Germany
- Naive host and new pathogen
 - DISEASE
History of VHSV

- Early name: Egtved Disease (Denmark)
- First described in Europe by Schaperclaus (1938) as “Kidney Swelling” (Nierenschwellung)
- 1950’s: Thought to be of viral etiology
- 1959: Transmission by injection of fish with a bacteria-free filtrate
- 1963: Isolation of a virus (Jensen)
- Low pathogenicity marine isolates.
VHSV in US

- 1988 and 1989: First known isolations in North America
 - Returning Chinook and Coho Salmon in Pacific NW, clinically normal fish.
 - Very concerning due to proximity to the US Rainbow Trout Industry (Hagerman Valley, Idaho)
- 1990’s:
 - Genotype IV found in multiple marine species (cod, herring) off the Pacific and Atlantic coasts, low mortalities.
- 2005:
 - Lake St. Claire, Michigan (MSU): Muskellunge (some submitted over several years to 2003)
 - Bay of Quinte, Lake Ontario, Canada (U of Guelph): Muskellunge, Freshwater Drum
- 2006:
 - Lake Erie (USFWS, LaCrosse, WI): Freshwater Drum “Windrows of fish” along the beach piled up 10’ wide and 4’ high.
 - New York: Round goby, muskellunge, smallmouth bass, walleye, emerald shiners, bluegill.
 - Lake Huron, MI: walleye, chinook salmon and whitefish 22 miles from the entrance to Lake Michigan.
Clinical signs

• Disease signs (early descriptions in Europe):
 – Primarily young fish
 – Initiate when water temperature reaches 10C
 – Can cause significant losses

• External signs
 – Fish take on darker coloration
 – Exophthalmia ("pop eye")
 – Gills may be pale with some petechiation
 – Hemorrhage in orbits and base of fins

• Impossible to diagnose VHS based on clinical signs alone, some fish may have severe signs of the disease, others may have no signs.
The Disease

• Internal signs
 – Some fish with severe internal hemorrhage; some with petechial hemorrhage
 – Petechial hemorrhage in muscle
 – Visible changes in
 • Liver – pale, mottled with hyperemic areas
 • Kidneys – more intensely red, swollen
 • Spleen – enlarged
 – Digestive tract may be devoid of food
VHSV – Gross Pathology

• Causes a hemorrhagic disease

• Multiplies in endothelial cells of blood capillaries, leucocytes, hematopoietic and nephron cells
Diagnosis of VHSV- Histopathology

• Histopathological changes are generally confined to the liver, kidneys, spleen, and skeletal muscle.
 – In the liver, kidneys, and spleen, focal to extensive necrotic changes can occur
 – The hematopoietic areas of the kidney and spleen are the initial foci of infection.
 – In skeletal muscle, blood cells accumulate in muscle bundles and fibers but little damage occurs.
VHSV - Histopathology

Liver: pyknotic nuclei

Kidney: necrosis

Spleen: necrosis

Gill: thickened lamellae
Diagnosis of VHSV- Virology

- Virology is required to diagnose VHSV.
- Standard cell culture methods used to initially detect the presence of a virus.
 - Cell lines recommended are FHM, RTG-2, CHSE, and EPC.
 - Inoculate cell monolayers with filtered homogenate of tissues from suspect fish.
 - Incubate at 15\(^\circ\)C, inspecting for cytopathic effect (CPE) regularly.
 - CPE positive samples should be re-inoculated on cells (passaged) and exhibit CPE again on new monolayers.
VHSV - Detection

- VHSV isolates were cultured on fathead minnow cells.
- Cytopathic effects was noted after 3 days at 15°C.
- Cells rounded up with a granular appearance.

Negative control

CPE 4 days PI
Diagnosis of VHSV- Virology

• Confirm VHSV (from the 2003 OIE Manual of Diagnostic Tests for Aquatic Organisms):

• rt-PCR
 – Sequence a specific unique area (eg: N gene) of the VHSV genome.
 – Extract mRNA from suspect tissue or CPE-positive cell cultures.
 – Use specific markers from the VHSV sequence to detect the viral mRNA.
 – Need specific sequence of virus.
 – Faster turn-around.
VHSV - New York isolations

- In May 2006, VHSV was isolated during an extensive die-off of round gobies *Neogobius melanostomus* from the St. Lawrence River near Cape Vincent, NY and from Lake Ontario near Rochester, NY.
- Testing of moribund muskellunge from the St. Lawrence River also showed the presence of VHSV by tissue culture.
VHSV - New York isolations

• Subsequent testing of moribund smallmouth bass (*Micropterus dolomieu*) from two locations on Lake Ontario also demonstrated the presence of VHSV by tissue culture.

• Finally, a moribund burbot (*Lota lota*) from the St. Lawrence River near Clayton, NY was found infected with VHSV by culture.
VHSV - Sequencing

- A region of the G gene was sequenced at the USGS Seattle Laboratory.
- VHSV isolates from the Lake Ontario freshwater drum, the Lake St. Clair muskellunge, and the round goby were found to be essentially identical.
- Significantly different from other North American VHSV isolates- Genotype IVb.

Elsayed et al. In Press
2006 VHSV Testing

- Surveillance for VHSV in New York State
- Approximately 1300 samples (fish or pools of fish) received for VHSV testing.
- Cell culture on all samples according to FHS and OIE standards.
- Quantitative rt-PCR on all samples.
- Samples received from:
 - Fish kill investigations.
 - St. Lawrence River healthy fish survey.
 - NYSDEC healthy fish survey.
 - Baitfish survey.
2006 VHSV Testing

- Fish kill investigations:
 - Fish submitted as part of ongoing mortality event investigations.
 - 21 different cases from 16 locations, mostly Great Lakes and St. Lawrence.
- Confirmed VHSV cases:
 - Round goby: Cape Vincent, St. Lawrence
 - Burbot: Clayton, St. Lawrence
 - Round goby: Irondequoit Bay, Lake Ontario
 - Smallmouth bass: Sodus Bay, Lake Ontario
 - Muskellunge: Clayton, St. Lawrence
 - Smallmouth bass: Tibbitts Point, Lake Ontario
 - Walleye: Lake Conesus
2006 VHSV Testing

• St. Lawrence healthy fish survey.
• All fish were collected from St. Lawrence River by SUNY-ESF during late May to early June 2006.
• Samples frozen and transported to Cornell for processing.
• Approximately 300 fish from 18 locations along the St. Lawrence River near TIBS.
• VHSV confirmed species:
 – Brown bullhead: Garlock
 – Bluegill: Garlock
 – Smallmouth bass: Rose Outer
2006 VHSV Testing

• NYSDEC Healthy fish survey
 – Survey of predator and prey species from priority water bodies in New York State.
 – Goal to have 30 prey and 30 predator samples from each location.
 – Samples delivered ASAP to Cornell for testing to reduce loss of diagnostic value.
 – 16 locations, 865 fish.
 – No cell culture positive samples at present time!
Baitfish Survey

• Healthy baitfish minnows collected.
• Pooled samples for VHSV testing (5 fish each)
• Confirmed VHSV:
 – Bluntnose minnows: St. Lawrence River
 – Emerald shiners: Niagara River
 – Emerald shiners: Lake Erie
• Control: Van Camp Pond, private baitfish pond with no new additions for 3+ years.
 – Cell culture negative, 1 pool was qRT-PCR positive.
VHSV - Summary

- VHSV is an emerging disease of freshwater fish in North America.
- VHS has been detected in Lake Ontario, Lake Erie, Lake St. Clair, Conesus Lake, and the St. Lawrence River.
- A type IV strain of VHSV has been isolated from varied species including round goby, muskellunge, freshwater drum, smallmouth bass, yellow perch, bluegill, walleye, emerald shiners.
- Sequence of the round goby and muskellunge isolates are significantly different from other North American VHSV marine isolates, designated Genotype IVb
Spring Viremia of Carp

- *Rhabdoviridae*, specifically *Rhabdovirus carpio*.
- Affects common carp, koi carp, grass carp, silver carp, bighead carp, crucian carp, goldfish, tench, and sheatfish.
- Common carp are the most susceptible species.
 - considered to be the principal host.
- Very young fish of various species are also susceptible.
 - Eg: pike, perch

History of SVC

• First described in Yugoslavia in 1971.
• Present in Europe for at least 50 years.
• Substantial impact on carp production in Europe:
 – Estimated 10-15% of 1 year old fish.
 – Natural mortalities can reach 70%
Spring Viremia of Carp in USA

- **2002:** First cases in USA were confirmed
 - North Carolina, Virginia: Koi hatchery.
 - Wisconsin: Cedar Lake, 10-ton fish kill.

- **2003:**
 - Illinois: carrier carp detected in the Cal-Sag channel near Chicago

- **2004:**
 - Washington: common carp
 - Missouri: Pike County, ornamental koi.
SVC 2006

• June 2006:
 – 150 common carp from Hamilton Harbor, Lake Ontario screened for VHSV prior to shipment.
 – VHSV was not detected in these fish, but Spring Viremia of Carp virus was isolated.
 – Virus was isolated from 18 of 30 five fish tissue pools on EPC cells. CPE was not evident on CHSE cells.
 – The virus was sent to CEFAS, Weymouth, UK for confirmation testing, confirmed as SVCV.
 – Phylogenetic analysis grouped the Canadian isolate in SVCV genogroup together with isolates from the United States and Asia.
 – This isolation represents the first detection of SVCV in Canada.
Spring Viremia of Carp

• Optimal temperature 16-17°C
 – 90% mortalities in experimental studies.
• Mortality reduced at higher and lower temperatures.
• Outbreaks occur during spring with warming temperatures.
• Horizontal transmission through water.
SVCV Summary

• Highly contagious disease of yearling carp.
• Present in the Great Lakes, however no mortality events confirmed to date.
• Affects other species, including endangered wild minnows and commercial species such as perch.
VHSV and SVCV – future work

- Continued co-operation with the New York State Department of Environmental Conservation.
- Dead or dying fish that are suspected to be infected with VHSV or SVC should be immediately submitted for evaluation to regional agencies.
VHSV and SVCV - ongoing work

• Development of a quantitative RT-PCR test for VHSV.
 – Cloned regions of the N and G gene specific to the Great Lakes type IVb genotype of VHSV.
 – Allows for very sensitive detection of low levels of VHSV in fish and water.
 – Results give an absolute quantity of viral particles or genes detected in the sample.

• Development of a QRT-PCR test for SVCV.
VHSV – ongoing work

• Validation of qRT-PCR test.
 – Official procedure outlined by the OIE (World Organization of Animal Health).
 – Statistics on 2006 results.
 – Test becomes officially sanctioned as a valid test for the initial detection of VHSV.
 • Advantages: cheap and fast results.
 • Disadvantages: expensive equipment and need highly trained laboratory personnel.
VHSV and SVC: Concerns

- Historically VHSV and SVCV are known as an extremely serious viral pathogens of economically important fish species.
- Recent isolations signal an early invasion of VHSV and SVC in freshwater fish that inhabit the Great Lakes.
- VHSV had not been previously known in the freshwater environment of the western hemisphere.
- Current host and geographic range of VHSV and SVC must be determined to manage the spread of this disease.
- The full significance to aquaculture is not known at this point.
VHSV and SVC: Questions

• Are the Lake Ontario salmonids at risk?
• By what mechanisms can VHSV be transmitted to new fish species and to new locations?
 – Can forage fish facilitate transmission to predatory fish?
 – Can commercial and/or recreational boat traffic serve as vectors?
 – Can sport fishing activities serve as vectors?
 – Can other animals serve as vectors (e.g. aquatic birds)?
 – What is the impact of movement of fish?
 • Stocked fish
 • Baitfish
Thanks:

Fish Pathology:
- Dr. Paul Bowser, PhD
 Professor of Aquatic Animal Medicine
- Dr. Rod Getchell, PhD
 Research Associate
- Greg Wooster, MSc
 Research Support Specialist
- Steve Frattini
 NIH Student Intern
- Kelly Britt
 Aquavet Student Intern
- Holly Kohler
- Sarah McConnachie

Virology:
- Dr. James Casey, PhD
 Professor of Virology
- Dr. Young-Sook Kim, PhD
 Visiting Scientist
- Rufina Casey, MSc
 Research Support Specialist

Pathology
- Dr. Ana Alcaraz, DVM, PhD, DACVP
More thanks:

- **USGS:**
 - Dr. Jim Winton
 - Dr. Bill Batts
- **NYS DEC**
 - Doug Stang
 - Bill Culligan
 - Andy Noyes
 - Regional Chiefs and Staff
- **SUNY ESF**
 - Dr. John Farrell
 - Geoff Eckerland
- **Danish Institute for Food and Veterinary Research,**
 - Dr. N.J. Olesen