Skip to main content

Ruth Collins, PhD

Department of Molecular Medicine

Associate Professor

Ruth Collins' Lab

Department of Molecular Medicine
Cornell University College of Veterinary Medicine
T8-016B Veterinary Research Tower
Ithaca, NY 14853

Office: 607.253.4123
Lab: 607.253.4320

Research Interest

Our research seeks to uncover the molecular details of how Rab proteins function and how they regulate intracellular traffic. A fascinating feature of Rab proteins is that they are covalently modified at their COOH-terminus with two geranylgeranyl lipid modifications. This modification enables the protein to associate with lipid bilayers. The GDP-bound Rab can partition into the cytosol with the aid of a chaperone protein called GDI. So, in addition to alternating between GDP and GTP-bound forms, Rab proteins also can cycle on and off membranes. We would like to understand the detail of how the Rab protein cycle between membranes and the cytosol is linked to their nucleotide cycle.

The YIP1 family of membrane proteins

Our lab previously identified a membrane protein called Yip1p as a protein that can bind the hydrophobic lipid tails of the Rab proteins. Yip1p is encoded by an essential gene and is functionally conserved across evolution. Research in our lab is focused on understanding the physiological function of Yip1p and related family members together with the architecture of these proteins and the molecular details of how they may influence intracellular transport events.

Regulators of Rab proteins and the Elp complex

There are many extrinsic factors that can act to govern the nucleotide cycle of Rab proteins. Some factors, such as GEFs and GAPs do this directly, binding to the Rab proteins to change the rate of nucleotide cycling. In a genetic screen to uncover new factors that can regulate Rab protein action in vivo, our lab discovered the Elp complex. The Elp complex appears to control the pathways of polarized growth in the cell that are regulated by the Rab protein Sec4p. We are very excited about this discovery and want to learn how the Elp complex functions and how this impacts polarized growth in cells. A genetic mutation in one of the proteins of the Elp complex in humans is the cause of a devastating neurological disease, Familial Dysautonomia. Given the remarkable molecular conservation between the machinery that regulates polarized growth and exocytosis in yeast on the one hand, and polarized growth and neuronal transmission in mammalian cells on the other hand; we are confident that our studies will illuminate fundamental aspects of growth control that will provide important insights into this disease in particular and neuronal function in general.


  • PhD, Cell Biology, Imperial College London/Cancer Research UK, 1993
  • B. Sc., Biochemistry , University of Oxford, 1988

Biography/Professional Experience

  • 2006-Present, Associate Professor, Department of Molecular Medicine, Cornell University
  • 1999-2006, Assistant Professor, Department of Molecular Medicine, Cornell University
  • 1996-1999, Associate Research Scientist, Department of Cell Biology, Yale University
  • 1996, Postdoctoral Fellow, Yale University



Awards and Honors

  • 2006, Cornell University Provost's Award for Distinguished Scholarship , Cornell University
  • 2003, Young Faculty Pfizer Award for Research Excellence, Pfizer
  • 1996, NATO Fellowship for Postdoctoral Research, NATO
  • 1994-1996, Human Frontiers Science Program Long-Term Fellowship, Human Frontiers Science Program
  • 1993-1994, European Molecular Biology Organization Fellowship, European Molecular Biology Organization
  • 1989-1992, Imperial Cancer Research Fellowship Pre-Doctoral Award

Professional/Academic Affiliations

  • American Society for Cell Biology
  • Genetics Society of America
  • NY Academy of Science
  • 2012, Faculty of 1000: Biology, Section of Cell Biology


  • 2012, Graduate Education Review Committee for Cell Biology, UNC Chapel Hill, Member